Modeling Mobile Source Air Toxics Hot Spots

Chad Bailey

U.S. EPA Office of Transportation and Air Quality

Air Toxics Center

Overview of Presentation

- Introduction to air toxics
- Microscale traffic modeling
- CALINE4 model
- Hands-on demonstration with CL4

EMISSIONS: Mobile Source Air Toxics

- Acetaldehyde
- Acrolein
- Arsenic Compounds
- Benzene*
- 1,3-Butadiene
- Dioxins/Furans

- Diesel PM + OG
- Ethylbenzene*
- Formaldehyde
- n-Hexane*
- Lead Compounds
- Chromium Compounds Manganese Compounds Toluene*
 - Mercury Compounds

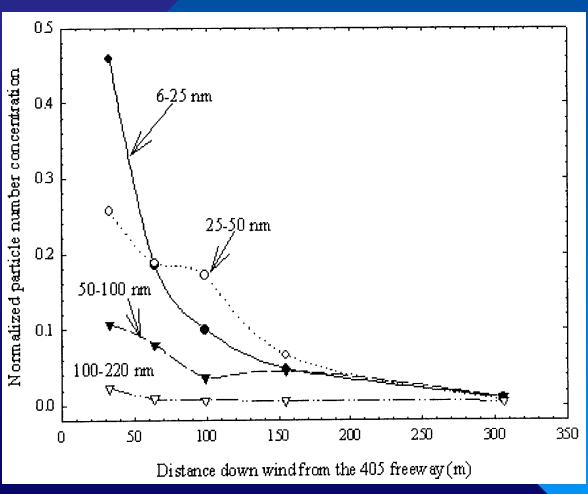
- MTBE*
- Naphthalene*
- Nickel Compounds
- POM
- Styrene
- Xylene*

*Found in evaporative as well as exhaust emissions.

Air Toxics Assessment (Inhalation)

Dose-Response Assessment (Toxicity Data)

Risk
Assessment/
Characterization

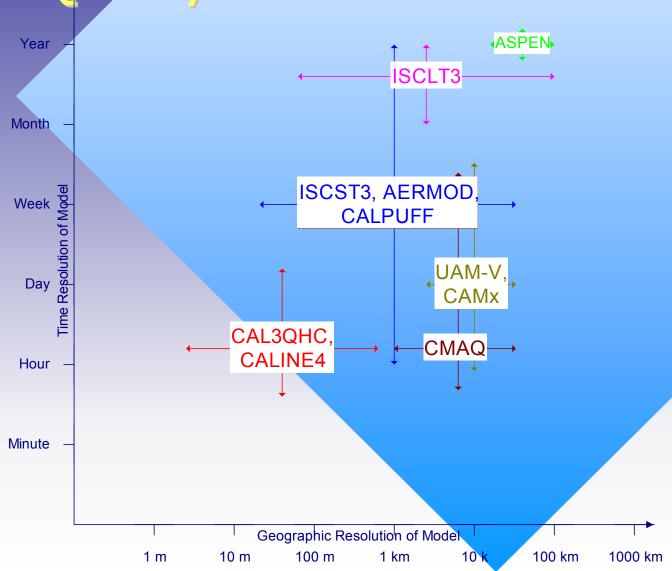

Emissions Inventory Development

Air Quality Modeling

Air Quality Monitoring Inhalation Exposure Modeling

Personal Monitoring

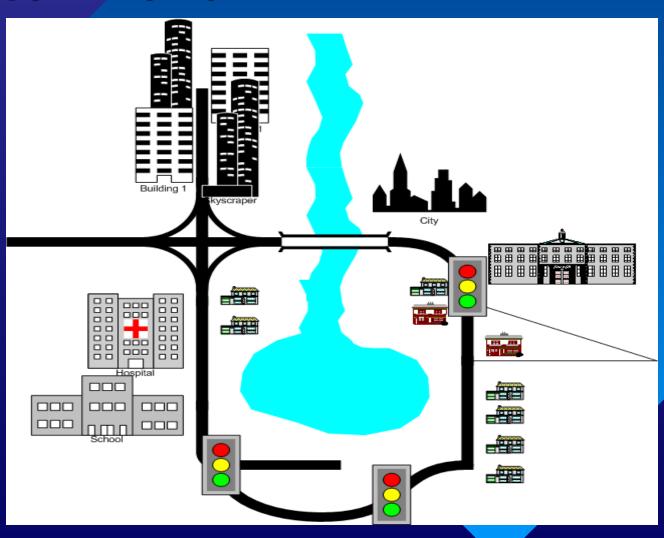
Why is microscale important?

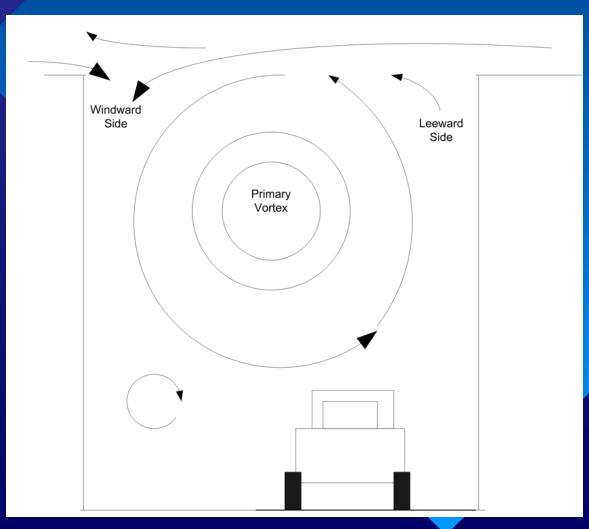

- •Living near busy roads associated with asthma, adverse birth outcomes, and childhood cancer in multiple studies
- •A Dutch study also showed that people 55-69 years old who lived near busy roads had 95% greater risk of death from cardiovascular or respiratory causes

Courtesy Dane Westerdaal

Tools for modeling air toxics in air near roadways...

- Emission models
 - MOBILE6.2 draft emission factor model that provides estimates of 6 toxics
- Air quality (dispersion) models
 - CAL models (CALINE3/4, CAL3QHC/R)
 - HYROAD (Hybrid Road and Intersection Model)
 - Other models (ISC)


Air Quality Models Available


Roadway (Microscale) Modeling

- Interface of multiple areas:
 - Transportation Infrastructure
 - Vehicle Travel Patterns
 - Emission Factors/Fates
 - Meteorology

Roadways: Embedded in the Real World

Complex Microscale Phenomena in "Urban Canyons"

Approaches to Modeling

- Simplifications of complex meteorology
 - Computational fluid dynamics
 - Lagrangian puff model
 - Gaussian models with near-roadway assumptions

Guidance on Dispersion Modeling

- EPA transportation conformity regulations require hot-spot analysis of CO and PM₁₀ for federally-funded projects
 - PM_{2.5}, CO, and PM₁₀ options under review
- "Guideline for Modeling Carbon Monoxide from Roadway Intersection"
 - http://www.epa.gov/scram001/tt25.htm#guidance
 - Requires use of CAL3QHC
- No current guidance for air toxics

Modeling Air Toxics

- Microscale air quality models needed to estimate facility-specific impacts
- Examples:
 - Freeway construction
 - New travel patterns due to road closing
 - NEPA

The Gaussian Models

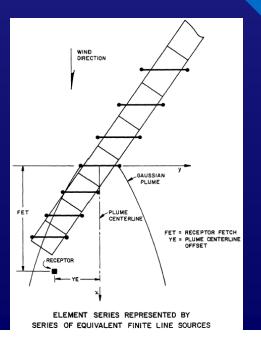
CALINE3

EPA-approved model for transportation impacts along roadways

CAL3QHC

 EPA-approved model for intersection modeling, with traffic queues, idling, stop/go cycles

CALINE4


Modified CALINE with some intersection options

Example: CALINE4

- CALINE4 is one of the CAL series of roadway dispersion models
- Developed by California DOT (CalTrans)
- Like other CAL models, employs continuous Gaussian plume algorithm
- Modifications for vehicle-induced mechanical and thermal turbulence

Basic Theory in CALINE4

•CALINE4 uses
Gaussian
plume model
for "line
sources"

$$dC = \frac{q.dy}{2\pi u \sigma_y \sigma_z} \left[exp \left(\frac{-y^2}{2\sigma_y^2} \right) \right] \left\{ exp \left[\frac{-(z-H)^2}{2\sigma_z^2} \right] + exp \left[\frac{-(z+H)^2}{2\sigma_z^2} \right] \right\},$$

where

dC = Incremental Concentration

q = Lineal Source Strength

u = Wind Speed

H = Source Height

 σ_y , σ_z = Horizontal and Vertical Dispersion Parameters.

 Dispersion algorithm adjusted to account for vehicle turbulence near roadways

Simplifications in CALINE

- "Mixing Zone"
 - Volume above and 3 m out from edge of traffic lanes (at a minimum)
 - Accounts for air mixing in traffic, Gaussian dispersion curves used outside zone
 - Cannot reliably predict concentrations within this zone

What you need to run CALINE4

- Roadway geometry
 - Width, length (by segment), height, flat/bridge/fill
- Traffic patterns
 - Hourly traffic on links (observed or modeled)
- Emission factors
 - Based on MOBILE6.2
- Meteorology
 - Wind speed, angle, and standard deviation of angle

The Next Generation (?)

- HYROAD (Hybrid Intersection and Road Air Dispersion Model)
 - Developed by National Cooperative Highway Research Program under ICF Consulting
 - Combines advanced traffic algorithm,
 Gaussian and Lagrangian air quality models
 to handle calms better

Other Resources

- Tutorials
 - http://legacy.eos.ncsu.edu/eos/info/ce400_info/www2/cal 3qhc.html
- CalTrans Air Quality Web Site
 - http://www.dot.ca.gov/hq/env/air/index.htm
- Commercial front-end packages are available for these models
- OTAQ Air Toxics Center
 - Chad Bailey bailey.chad@epa.gov